Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(3): 1345-1361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486995

RESUMO

A novel strategy of not only stimulating the immune cycle but also modulating the immunosuppressive tumor microenvironment is of vital importance to efficient cancer immunotherapy. Here, a new type of spatiotemporal biomimetic "Gemini nanoimmunoregulators" was engineered to activate robust systemic photoimmunotherapy by integrating the triple-punch of amplified immunogenic cell death (ICD), tumor-associated macrophages (TAMs) phenotype reprogramming and programmed cell death ligand 1 (PD-L1) degradation. The "Gemini nanoimmunoregulators" PM@RM-T7 and PR@RM-M2 were constructed by taking the biocompatible mesoporous polydopamine (mPDA) as nanovectors to deliver metformin (Met) and toll-like receptor 7/8 agonist resiquimod (R848) to cancer cells and TAMs by specific biorecognition via wrapping of red blood cell membrane (RM) inlaid with T7 or M2 peptides. mPDA/Met@RM-T7 (abbreviated as PM@RM-T7) was constructed to elicit an amplified in situ ICD effect through the targeted PTT and effectively stimulated the anticancer immunity. Meanwhile, PD-L1 on the remaining cancer cells was degraded by the burst metformin to prevent immune evasion. Subsequently, mPDA/R848@RM-M2 (abbreviated as PR@RM-M2) specifically recognized TAMs and reset the phenotype from M2 to M1 state, thus disrupting the immunosuppressive microenvironment and further boosting the function of cytotoxic T lymphocytes. This pair of sister nanoimmunoregulators cooperatively orchestrated the comprehensive anticancer activity, which remarkably inhibited the growth of primary and distant 4T1 tumors and prevented malignant metastasis. This study highlights the spatiotemporal cooperative modalities using multiple nanomedicines and provides a new paradigm for efficient cancer immunotherapy against metastatic-prone tumors.

2.
Sci Total Environ ; 919: 170904, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354799

RESUMO

Using cucumber, maize, and ryegrass as model plants, the diversity and uniqueness of the molecular compositions of dissolved organic matter (DOM) and the structures of microbial communities in typical crop rhizosphere soils, as well as their associations, were investigated based on high-resolution mass spectrometry combined with high-throughput sequencing. The results showed that the rhizosphere contained 2200 organic molecules that were not identified in the non-rhizosphere soils, as characterized by FT-ICR-MS. The rhizosphere DOM molecules generally contained more N, S, and P heteroatoms, stronger hydrophilicity, and more refractory organic matter, representing high and complex chemical diversity characteristics. 16SrRNA sequencing results demonstrated that Proteobacteria, Actinomycetes and Firmicutes were the dominant flora in the soils. Plant species could significantly change the composition and relative abundance of rhizosphere microbial populations. The microbial community structures of rhizosphere and non-rhizosphere soils showed significant differences at both the phylum and class levels. Multiple interactions between the microorganisms and DOM compositions formed a complex network of relationships. There were strong and remarkable positive or negative couplings between different sizes and categories of DOM molecules and the specific microbial groups (P < 0.05, |R| ≥ 0.9) in the rhizosphere soils as shown by network profiles. The correlations between DOM molecules and microbial groups in rhizosphere soils had plant species specificity. The results above emphasized the relationship between the heterogeneity of DOM and the diversity of microbial communities, and explored the molecular mechanisms of the biochemical associations in typical plant rhizosphere soils, providing a foundation for in-depth understanding of plant-soil-microbe interactions.


Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Rizosfera , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo
3.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382014

RESUMO

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Animais , Camundongos , Retardadores de Chama/toxicidade , Éter , Bioacumulação , Sêmen , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Éteres , Etil-Éteres
4.
Sci Rep ; 14(1): 1784, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245620

RESUMO

To investigate the risk factors for new renal scarring (NRS) in children with vesicoureteral reflux (VUR) receiving continuous antibiotic prophylaxis (CAP). This was a single-center cohort study. The clinical data of 140 children with grade I-V VUR receiving CAP were analyzed. In this study, exposure variables were sex, younger age at the initial diagnosis of UTI ≤ 12 months, the occurrence of breakthrough urinary tract infection (BT-UTI), high-grade VUR, bilateral VUR, etiology, presence of renal scarring at the initial diagnosis and ultrasound abnormalities. The outcome was NRS. A total of 140 children were included in the risk factor analysis of NRS, 73 of whom experienced NRS, an incidence rate of 52.14%. Multivariate Cox regression suggested that the presence of renal function impairment after the initial diagnosis of UTI (OR 3.411, 95% CI 1.5751-6.646) and the occurrence of BT-UTI while receiving CAP (OR 1.995, 95% CI 1.089-2.958) were independent risk factors for NRS. Multivariate Cox regression showed that high-grade VUR had no significant effects on NRS (OR 0.940, 95% CI 0.462-1.912, P = 0.864). No significant difference was identified in multivariate Cox regression analysis in the IV-V group (vs I-III group) (OR 0.960, 95% CI 0.565-1.633, P = 0.960). Renal function impairment after the initial diagnosis of UTI and the occurrence of BT-UTI while receiving CAP were independent risk factors for NRS. Neither univariate analysis nor multivariate analysis found a correlation between VUR grade and NRS.


Assuntos
Infecções Urinárias , Refluxo Vesicoureteral , Criança , Humanos , Lactente , Refluxo Vesicoureteral/complicações , Antibioticoprofilaxia/efeitos adversos , Estudos de Coortes , Cicatriz/tratamento farmacológico , Infecções Urinárias/etiologia , Infecções Urinárias/prevenção & controle , Infecções Urinárias/tratamento farmacológico , Fatores de Risco , Estudos Retrospectivos
5.
Mini Rev Med Chem ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37855278

RESUMO

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease. According to the American Cancer Society's 2021 cancer data report, new cases of CML account for about 15% of all leukemias. CML is generally divided into three stages: chronic phase, accelerated phase, and blast phase. Nearly 90% of patients are diagnosed as a chronic phase. Allogeneic stem cell transplantation and chemotherapeutic drugs, such as interferon IFN-α were used as the earliest treatments for CML. However, they could generate obvious side effects, and scientists had to seek new treatments for CML. A new era of targeted therapy for CML began with the introduction of imatinib, the first-generation BCR-ABL kinase inhibitor. However, the ensuing drug resistance and mutant strains led by T315I limited the further use of imatinib. With the continuous advancement of research, tyrosine kinase inhibitors (TKI) and BCR-ABL protein degraders with novel structures and therapeutic mechanisms have been discovered. From biological macromolecules to classical target protein inhibitors, a growing number of compounds are being developed to treat chronic myelogenous leukemia. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in CML therapy, including TKIs and BCR-ABL protein degrader. The examples provided herein describe the pharmacology activity of small-molecule drugs. These drugs will provide new enlightenment for future treatment directions.

6.
Phytopathology ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856707

RESUMO

Carvacrol expresses a wide range of biological activities, but the studies of its mechanisms focused on bacteria, mainly involving the destruction of the plasma membrane. In this study, carvacrol exhibited strong antifungal activities against several phytopathogenic fungi and determined a novel antifungal mechanism against Lasiodiplodia theobromae. RNA sequencing indicated that many genes of L. theobromae hyphae were predominately induced by carvacrol, particularly those involved in replication and transcription. Hyperchromic, hypsochromic, and bathochromic effects in the UV-visible absorption spectrum were observed following titration of calf thymus DNA (ctDNA) and carvacrol, which indicated the formation of a DNA-carvacrol complex. Circular dichroism (CD) spectroscopy indicated the response of DNA to carvacrol was similar to 4', 6-diamidino-2-phenylindole (DAPI), but different from that of ethidium bromide (EB), implying the ionic bonds between carvacrol and ctDNA. Fluorescence spectrum (FS) analysis indicated that carvacrol quenched the fluorescence of double-stranded DNA more than single-stranded DNA, indicating that carvacrol mainly bound to double-stranded DNA. A displacement assay showed that carvacrol reduced the fluorescence intensity of the DNA-DAPI complex through competing with DAPI, but this did not occur for DNA-EB. FS assay revealed that carvacrol bound to AAA sequence on the minor groove of ds-oligonucleotides. The hydroxyl of carvacrol was verified to bind to ctDNA through a comparative test in which structural analogs of carvacrol, including thymol, 4-ethyl-1,2-dimethyl, etc. were analyzed. The current study indicated carvacrol can destruct plasma membranes and bind to the minor groove of DNA, which inhibited the fungal proliferation by disturbing the stability of dsDNA.

7.
Plant Dis ; 107(9): 2830-2834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707825

RESUMO

Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Chá
8.
Small ; 19(49): e2304370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587781

RESUMO

Reprogramming the immunologically "cold" environment of solid tumors is currently becoming the mainstream strategy to elicit powerful and systemic anticancer immunity. Here, a facile and biomimetic nano-immunnoactivator (CuS/Z@M4T1 ) is detailed by engineering a Zn2+ -bonded zeolitic imidazolate framework-8 (ZIF-8) with CuS nanodots (NDs) and cancer cell membrane for amplified near-infrared-II (NIR-II) photothermal immunotherapy via Zn2+ metabolic modulation. Taking advantage of the NIR-II photothermal effect of CuS NDs and the acidic responsiveness of ZIF-8, CuS/Z@M4T1 rapidly causes intracellular Zn2+ pool overload and disturbs the metabolic flux of 4T1 cells, which effectively hamper the production of heat shock proteins and relieve the resistance of photothermal therapy (PTT). Thus, amplified immunogenic cell death is evoked and initiates the immune cascade both in vivo and in vitro as demonstrated by dendritic cells maturation and T-cell infiltration. Further combination with antiprogrammed death 1 (aPD-1) achieves escalated antitumor efficacy which eliminates the primary, distant tumor and avidly inhibits lung metastasis due to cooperation of enhanced photothermal stimulation and empowerment of cytotoxic T lymphocytes by aPD-1. Collectively, this work provides the first report of using the intrinsic modulation property of meta-organometallic ZIF-8 for enhanced cancer photoimmunotherapy together with aPD-1, thereby inspiring a novel combined paradigm of ion-rich nanomaterials for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Adjuvantes Imunológicos , Biomimética , Fototerapia , Neoplasias/terapia , Imunoterapia , Linhagem Celular Tumoral
9.
Toxicology ; 491: 153517, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105376

RESUMO

Formaldehyde (FA) has neurotoxic characteristics and causes neurodegenerative disease. Our previous study demonstrated the neuroprotective effects of hydrogen sulfide (H2S) on FA-induced neurotoxicity in HT22 cells. Emerging evidence have supported that ferroptosis is involved in FA-induced neurotoxicity. To understand the mechanism of the protection of H2S against FA-induced neurotoxicity, this study explored the regulatory effect of H2S on FA-induced ferroptosis and the underlying mechanisms. The researcher found that H2S (100, 200, and 400 µM, 30 min) reverses the ferroptosis induced by FA (100 µM, 24 h) in HT22 cells (a cell line of mouse hippocampal neurons), including decreases in free iron, reactive oxygen species (ROS), 4-hydroxy-2-trans-nominal (4-HNE), and malondialdehyde (MDA) contents, as well as an increase in glutathione (GSH) content. H2S (100, 200, and 400 µM, 30 min) also inhibited ferritinaphagy in FA-exposed HT22 cells, as evidenced by the downregulation of the ferritinophagy receptor nuclear receptor coactivator 4 (NCOA4) and microtubule-associated protein 1 light chain-3B (LC3B) as well as the upregulation of the main iron storage protein ferritin heavy chain 1 (FTH1) and p62. H2S (100, 200, and 400 µM, 30 min) also up-regulated the expression of growth differentiation factor-11 (GDF11) in FA-exposed HT22 cells. Furthermore, knockdown of GDF11 in HT22 cells cancelled the beneficial effects of H2S in FA-induced ferroptosis and ferritinaphagy. These data indicated that the protective mechanism underlying H2S-prevented neurotoxicity of FA is involved in alleviating FA-induced ferroptosis via inhibiting ferritinaphagy by upregulation of GDF11.


Assuntos
Ferroptose , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Regulação para Cima , Ferro/metabolismo , Formaldeído/toxicidade , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo
10.
Acta Biomater ; 164: 522-537, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072069

RESUMO

Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. PPHI@B/L was constructed by encapsulating the ROS-generating agent ß-lapachone (Lap) and the ROS-responsive doxorubicin prodrug (BDOX) in acidic pH-sensitive heterogeneous nanomicelles. PPHI@B/L exhibited particle size decrease and charge increase when it reached the tumor microenvironment due to acid-triggered PEG detachment, to favor its endocytosis efficiency and deep tumor penetration. Furthermore, after PPHI@B/L internalization, rapidly released Lap was catalyzed by the overexpressed quinone oxidoreductase-1 (NQO1) enzyme NAD(P)H in tumor cells to selectively raise intracellular ROS levels. Subsequently, ROS generation further promoted the specific cascade activation of the prodrug BDOX to exert the chemotherapy effects. Simultaneously, Lap-induced ATP depletion reduced drug efflux, synergizing with increased intracellular DOX concentrations to assist in overcoming multidrug resistance. This tumor microenvironment-triggered cascade responsive prodrug activation nanosystem potentiates antitumor effects with satisfactory biosafety, breaking the chemotherapy limitation of multidrug resistance and significantly improving therapy efficiency. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. The work provides a new sight for simultaneously addressing the molecular mechanisms and physio-pathological disorders to overcome MDR in cancer treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
11.
J Adv Res ; 48: 33-46, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35908726

RESUMO

INTRODUCTION: As signal molecules in aerobic organisms, locally accumulated ROS have been reported to balance cell division and differentiation in the root meristem. Protein posttranslational modifications such as lysine acetylation play critical roles in controlling a variety of cellular processes. However, the mechanism by which ROS regulate root development is unknown. In addition, how protein lysine acetylation is regulated and whether cellular ROS levels affect protein lysine acetylation remain unclear. OBJECTIVES: We aimed to elucidate the relationship between ROS and protein acetylation by exploring a rice mutant plant that displays a decreased level of ROS in postembryonic crown root (CR) cells and severe defects in CR development. METHODS: First, proteomic analysis was used to find candidate proteins responsible for the decrease of ROS detected in the wox11 mutant. Then, biochemical, molecular, and genetic analyses were used to study WOX11-regulated genes involved in ROS homeostasis. Finally, acetylproteomic analysis of wild type and wox11 roots treated with or without potassium iodide (KI) and hydrogen peroxide (H2O2) was used to study the effects of ROS on protein acetylation in rice CR cells. RESULTS: We demonstrated that WOX11 was required to maintain ROS homeostasis by upregulating peroxidase genes in the crown root meristem. Acetylproteomic analysis revealed that WOX11-dependent hydrogen peroxide (H2O2) levels in CR cells promoted lysine acetylation of many non-histone proteins enriched for nitrogen metabolism and peptide/protein synthesis pathways. Further analysis revealed that the redox state affected histone deacetylases (HDACs) activity, which was likely related to the high levels of protein lysine acetylation in CR cells. CONCLUSION: WOX11-controlled ROS level in CR meristem cells is required for protein lysine acetylation which represents a mechanism of ROS-promoted CR development in rice.


Assuntos
Oryza , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Lisina/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetilação , Proteômica
12.
IEEE J Biomed Health Inform ; 26(12): 5859-5869, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36067109

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) has had a significant impact on healthcare and the economy. With representation learning applied in constructing COVID-19 knowledge graphs, abundant COVID-19-related knowledge collected by clinicians and scientists all over the world can be utilized to deepen their understanding of the mechanism and related biological functions of the disease. However, most existing representation learning models cannot deal well with COVID-19 knowledge graph due to its low-connected star-like structure and various complex nonlinear relationships. Besides, lacking reliable negative triplets is also a difficult problem, yet to be adequately resolved. In this article, we propose a novel representation learning model called translation on hyperplanes with an activation operation and similar semantic sampling (SimH) for COVID-19 knowledge graphs. In our proposed SimH, an activation operation is designed to provide additional interaction features for low-in-degree entities. Then the hyperplane projection technique is introduced to the distance-based scoring function so that those complex nonlinear relationships can be modeled with lower complexity maintained in comparison with other nonlinear models. Moreover, a negative triplet sampling method that adaptively replaces entities with similar semantics is introduced to generate reliable negative triplets. To verify the effectiveness of SimH, extensive experiments are conducted on the COVID-19-Concepts dataset. The experimental results show that our SimH model achieves significant improvements in prediction and classification accuracy over existing knowledge representation learning models.


Assuntos
COVID-19 , Humanos , Bases de Conhecimento , Aprendizado de Máquina , Semântica
13.
Acta Biomater ; 150: 391-401, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917909

RESUMO

Tumor microenvironment (TME)-oriented nanomedicine emerges as an efficient routine to greatly improve the efficiency of cancer treatment. The typical feature of hypoxia in TME remains as the main obstacle of many therapeutics like photodynamic therapy. Herein, a specific two-dimensional (2D) phototheranostics (GO-MnO2@tLyP-1/Ce6, denoted as GMtC) with the function of oxygen self-producing and tumor barrier-breaking was detailed by integrating the nanoenzyme MnO2 colloids, tumor homing-penetrating peptide tLyP-1 and photosensitizer chlorin e6 (Ce6) to tackle the hypoxic tumors. GMtC was capable to accumulate into the inner of murine mammary 4T1 tumor spheroids (and the depth could be as far as 90 µm) and to relieve the hypoxia state by catalytic decomposition of endogenous H2O2 to oxygen, which subsequently enhanced the yield of cytotoxic singlet oxygen under laser irradiation. In vivo dual-modal imaging of magnetic resonance and biofluorescence demonstrated the targeted accumulation and distribution of GMtC in tumor regions, thus facilitating the tumor hypoxia alleviation. Notably, GMtC achieved the highest photodynamic anticancer efficiency against 4T1 tumors without obvious systemic toxicity compared with the non-penetrating and no oxygen-generating counterparts. This study suggests the great promise of GMtC as an endogenous TME-responsive and exogenous laser-triggered theranostic platform against the solid hypoxic tumors. STATEMENT OF SIGNIFICANCE: The hostile tumor hypoxia not only induces the tumor angiogenesis, invasiveness and irreversible metastasis, but also inherently impairs the efficiency of many therapeutic modalities like photodynamic therapy (PDT). Though numerous hypoxia-alleviating strategies based on nanomedicine have been proposed, little attention is paid to the hypoxia-specific transportation barriers. This study develops a type of 2D phototheranostics GMtC against hypoxic solid tumors by integrating the function of tumor homing-penetrating and in situ oxygen-generating. GMtC displays outstanding performance in tumor deep penetration to hypoxia center and generating abundant oxygen in responsive to tumor microenvironment, thus exerting the highest efficiency of PDT against 4T1 mammary tumor. GMtC can be a potent theranostics to treat the solid hypoxic tumors.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio , Hipóxia , Compostos de Manganês/química , Camundongos , Óxidos/química , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
14.
RSC Adv ; 12(25): 15870-15884, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35685713

RESUMO

Choosing an appropriate equation of state and thermodynamic model is very important for predicting the phase equilibrium of a gas hydrate. This study is based on statistical thermodynamics, considering the changes in water activity caused by gas dissolution, and deriving and summarizing four thermodynamic models. Based on the 150 collected experimental data points, the accuracy of the four thermodynamic models in predicting the phase equilibrium of methane hydrate, ethane hydrate, and carbon dioxide hydrate were compared. In addition, the influence of five equations of state on each thermodynamic model's phase equilibrium prediction accuracy is compared. The analysis results show that in the temperature range of 273.40-290.15 K, the Chen-Guo model is better than other thermodynamic models in predicting the phase equilibrium of methane hydrate by using the Patel-Teja equation of state. However, in the temperature range of 290.15-303.48 K, the John-Holder model predicts that the phase equilibrium of methane hydrate will perform better. In the temperature range of 273.44-283.09 K, the John-Holder model uses the Peng-Robinson state to predict the phase equilibrium of carbon dioxide hydrate with the highest accuracy. In the temperature range of 273.68 K to 287.6 K, the Chen-Guo model is selected to predict the phase equilibrium of ethane hydrate with the highest accuracy. However, as the temperature increases, the predicted values of the vdW-P model and the Parrish-Prausnitz model deviate further from the experimental values.

15.
Mini Rev Med Chem ; 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379145

RESUMO

The article has been withdrawn at the request of the authors of the journal Mini-reviews in Medicinal Chemistry due to incoherent content.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policiesmain. php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

16.
Sci Total Environ ; 826: 154145, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227722

RESUMO

Due to the regulation of hexabromocyclododecane (HBCD), much attention has been paid to its potential substitutes, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (DBE-DBCH) and 1,2,5,6-tetrabromocyclooctane (TBCO). DBE-DBCH and TBCO contain several diastereomers and enantiomers, which may exhibit different environmental behaviors and biological effects. In this study, the accumulation and depuration of individual DBE-DBCH and TBCO diastereomers by earthworms (Eisenia fetida) from diastereomer-contaminated soils were evaluated. The accumulation and depuration kinetics of DBE-DBCH and TBCO diastereomers followed one-compartment first-order kinetics. The biota soil accumulation factor (BSAF) of ß-DBE-DBCH (2.74 goc glip-1) was 1.26 times that of α-DBE-DBCH (2.18 goc glip-1), while the BSAF of ß-TBCO (2.15 goc glip-1) was 1.62 times that of α-TBCO (1.3 goc glip-1), showing the diastereomer-specific accumulation of DBE-DBCH and TBCO. DBE-DBCH and TBCO diastereomers appeared to be transformed in earthworm-soil systems; however, no evidence of bioisomerization of the four diastereomers in earthworms was found, and no potential metabolites of debromination and hydroxylation were detected. Furthermore, the selective enrichment of E1-α-DBE-DBCH and E1-ß-DBE-DBCH (E1 represents the first enantiomer eluted) occurred in earthworms as the enantiomer fractions (EFs) for α-DBE-DBCH (0.562-0.763) and ß-DBE-DBCH (0.516-0.647) were significantly greater than those in the technical products (0.501 for α-DBE-DBCH and 0.497 for ß-DBE-DBCH, p < 0.05), especially in the depuration stage. The results demonstrated the diastereomer- and enantiomer-selective accumulation of DBE-DBCH and the diastereomer-selective accumulation of TBCO in the earthworm.


Assuntos
Retardadores de Chama , Oligoquetos , Poluentes do Solo , Animais , Cicloexanos , Ciclo-Octanos , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados , Oligoquetos/metabolismo , Solo , Poluentes do Solo/metabolismo
17.
J Hazard Mater ; 424(Pt C): 127610, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775311

RESUMO

The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective. Isomerization from α- to δ-TBECH and ß- to γ-TBECH, and metabolites of debromination, hydroxylation and TBECH-GSH adducts were identified in maize roots. The gene expressions of LTPs, CYPs and GSTs were extensively changed in maize after exposure to technical TBECH. CYP and GST enzyme activities as well as GST31 and CYP71C3v2 gene expressions were selectively induced or inhibited by TBECH diastereomers over time. TBECH was able to dock into the active sites and bind with specific residues of the typical biomacromolecules ZmLTP1.6, GST31 and CYP71C3v2, indicating their roles in the bioaccumulation and metabolization of TBECH. Binding modes and affinities to biomacromolecules were significantly different between α- and ß-TBECH, which contributed to their stereo-selectivity. This study provided a deep understanding of the biological fate of TBECH, and revealed the driving molecular mechanisms of the selectivity of TBECH stereoisomers in plants.


Assuntos
Retardadores de Chama , Zea mays , Bioacumulação , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo
18.
Drug Dev Res ; 83(1): 55-63, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34151456

RESUMO

Although 1H-benzo[d]imidazole-4-carboxamide derivatives have been explored for a long time, the structure-activity relationship of the substituents in the hydrophobic pocket (AD binding sites) has not thoroughly discovered. Here in, a series of 2-(4-[4-acetylpiperazine-1-carbonyl]phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives have been designed, synthesized, and successful characterization as novel and effective poly ADP-ribose polymerases (PARP)-1 inhibitors to improve the structure-activity relationships about the substituents in the hydrophobic pocket. These derivatives were evaluated for their PARP-1 inhibitory activity and cellular inhibitory against BRCA-1 deficient cells (MDA-MB-436) and wild cells (MCF-7) using PARP kit assay and MTT method. The results indicated that compared with other heterocyclic compounds, furan ring-substituted derivatives 14n-14q showed better PARP-1 inhibitory activity. Among this derivatives, compound 14p displayed the strongest inhibitory effects on PARP-1 enzyme (IC50  = 0.023 µM), which was close to that of Olaparib. 14p (IC50  = 43.56 ± 0.69 µM) and 14q (IC50  = 36.69 ± 0.83 µM) displayed good antiproliferation activity on MDA-MB-436 cells and inactivity on MCF-7 cells, indicating that 14p and 14q have high selectivity and targeting. The molecular docking method was used to explore the binding mode of compound 14p and PARP-1, and implied that the formation of hydrogen bond was essential for PARP-1 inhibition activities. This study also showed that in the hydrophobic pocket (AD binding sites), the introduction of strong electronegative groups (furan ring, e.g.) or halogen atoms in the side chain of benzimidazole might improve its inhibitory activity and this strategy could be applied in further research.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Relação Estrutura-Atividade
19.
Phytopathology ; 112(2): 460-463, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34110250

RESUMO

Tea leaf spot, caused by Lasiodiplodia theobromae, is an important disease that can seriously decrease the production and quality of tea (Camellia sinensis (L.) O. Kuntze) leaves. The analysis of circular RNA (circRNA) in tea leaves after infection by the pathogen could improve understanding about the mechanism of host-pathogen interactions. In this study, high-performance sequencing of circRNA from C. sinensis Fuding-dabaicha leaves that had been infected with L. theobromae was conducted using the Illumina HiSeq 4000 platform. In total, 192 and 153 differentially expressed circRNAs from tea leaves were significantly up- and downregulated, respectively, after infection with L. theobromae. A gene ontology analysis indicated that the differentially expressed circRNA-hosting genes for DNA binding were significantly enriched. The genes with significantly differential expressions that were annotated in the specified database (S genes) were σ factor E isoform 1, triacylglycerol lipase SDP1, DNA-directed RNA polymerase III subunit 2, WRKY transcription factor WRKY24, and regulator of nonsense transcripts 1 homolog. A Kyoto Encyclopedia of Genes and Genomes analysis indicated that the significantly enriched circRNA-hosting genes involved in the plant-pathogen interaction pathway were Calmodulin-domain protein kinase 5 isoform 1, probable WRKY transcription factor 33, U-box domain-containing protein 35, probable inactive receptor-like protein kinase At3g56050, WRKY transcription factor WRKY24, mitogen-activated protein kinase kinase kinase YODA, SGT1, and protein DGS1. Functional annotation of circRNAs in tea leaves infected by L. theobromae will provide a valuable resource for future research on host-pathogen interactions.


Assuntos
Ascomicetos , Camellia sinensis , Ascomicetos/genética , Perfilação da Expressão Gênica , Doenças das Plantas , RNA Circular , Chá
20.
Front Pediatr ; 9: 746159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778134

RESUMO

This study reports the clinical manifestations, genetics, and efficacy of treatment with the efficacy of recombinant human granulocyte macrophage colony-stimulating factor (rhGM-GSF) of a 2-year-old female patient with severe congenital neutropenia (SCN) type 7 (SCN7) caused by novel biallelic mutations in the colony-stimulating factor 3 receptor (CSF3R) gene. Genetic diagnosis of the patient was performed by whole-exome and Sanger sequencing. Expression of the CSF3R gene in the peripheral neutrophils of the patient was detected by real-time PCR and Western blotting. The patient presented with recurrent suppurative tonsillitis and decreased absolute neutrophil count <0.5 × 109/L. Novel heterozygous mutations were found to be inherited from each parent (maternal c.690delC [p.met231Cysfs*32] and paternal c.64+5G>A). The patient's neutrophils had lower CSF3R mRNA and protein levels than those of the parents. Low-dose rhGM-CSF (3 µg/kg/day once a week) prevented recurrent infection in the patient. These results demonstrate that the clinical manifestations of SCN7 with biallelic CSF3R mutations and downregulated CSF3R can be effectively treated with rhGM-CSF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...